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The linear interaction energy (LIE) method has been applied to the calculation of the binding
free energies of 15 inhibitors of the enzyme neuraminidase. This is a particularly challenging
system for this methodology since the protein conformation and the number of tightly bound
water molecules in the active site are known to change for different inhibitors. It is not clear
that the basic LIE method will calculate the contributions to the binding free energies arising
from these effects correctly. Application of the basic LIE equation yielded an rms error with
respect to experiment of 1.51 kcal mol-1 for the free energies of binding. To determine whether
it is appropriate to include extra terms in the LIE equation, a detailed statistical analysis was
undertaken. Multiple linear regression (MLR) is often used to determine the significance of
terms in a fitting equation; this method is inappropriate for the current system owing to the
highly correlated nature of the descriptor variables. Use of MLR in other applications of the
LIE equation is therefore not recommended without a correlation analysis being performed
first. Here factor analysis was used to determine the number of useful dimensions contained
within the data and, hence, the maximum number of variables to be considered when specifying
a model or equation. Biased fitting methods using orthogonalized components were then used
to generate the most predictive model. The final model gave a q2 of 0.74 and contained van der
Waals and electrostatic energy terms. This result was obtained without recourse to prior
knowledge and was based solely on the information content of the data.

Introduction

The calculation of free energies of binding can play a
critical role in rational drug design. Such calculations
have traditionally been carried out using the free energy
perturbation (FEP) or thermodynamic integration (TI)
methods (for reviews, see refs 1-3). These procedures
are theoretically exact and, if implemented appropri-
ately, can yield very precise estimates of free energies
of binding. However, to obtain good convergence and
hence high precision, the extensive simulation of non-
physical intermediate states is often required. Conse-
quently, the methods are highly computationally inten-
sive, making them impractical for application to many
industrial pharmaceutical problems. Clearly a primary
objective of current research has to be to obtain precision
and accuracy similar to that of these methods in a more
computationally efficient fashion.

A host of methods have been proposed to increase the
efficiency of such calculations either by reducing the
amount of data collection required through enhanced
sampling or by increasing the amount of information
which may be calculated from each simulation.4-9

One of the most attractive methods is the linear
interaction energy (LIE) method10 recently proposed by
A° qvist and co-workers. This is a semiempirical tech-
nique for the calculation of free energy changes based
on the simulation of only two states. In the case of the

calculation of binding free energies, these two states are
(i) the solvated ligand and (ii) the ligand bound to the
solvated protein. The theoretical foundation for the
method is linear response theory,10,11 on the basis of
which A° qvist and co-workers proposed an equation of
the form

for these calculations. ∆Uelec and ∆Uvdw are the differ-
ences in the averaged inhibitor-environment electro-
static and van der Waals energies, respectively, between
the two simulations, and the angled brackets denote
ensemble averages. This original work fitted the equa-
tion to the experimental free energies of binding for a
series of four endothiapepsin inhibitors, generating a
value of 0.161 for R.

The proposed method has since been successfully
applied to a variety of different systems10,12-16 including
HIV-1 protease,12,17 trypsin,18 and thrombin.15 While
A° qvist has reported good transferability of the param-
eters to a limited number of other systems, other
workers15,16 have not been so successful. Moreover, the
data sets to which the method has been applied have
mostly been quite small. Consequently, the issue of the
transferability of LIE parameters has not been fully
addressed.

Recently, however, Wang et al.19 investigated the
transferability of the van der Waals coefficient in more
detail. Simulations of trypsin-benzamidine18 and cam-
phor-P450cam16 systems had previously been carried
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∆G ) 0.5〈∆Uelec〉 + R〈Uvdw〉 (1)
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out using the GROMOS and CVFF force fields, respec-
tively. These simulations were repeated using the
Cornell et al. force field20 with a similar simulation
setup resulting in similar values of R. Hence it was
concluded that the value of R was not strongly depend-
ent on the force field. Similar simulations on five further
systems, giving a total of seven ligands interacting with
five proteins, showed that one fixed R could not give
results in agreement with experiment in all cases. Since
the work looks at a range of proteins and ligands all
simulated under the same protocol, it provides the most
reliable data to suggest the value of R is dependent on
the local environment. This work was carried out with
the value of â fixed to 0.5, and hence a similar analysis
is not available for this parameter. It has, however, been
noted by Hansson et al. that the value of â becomes
smaller than the theoretical 0.5 as the number of -OH
groups increases.13

Several questions concerning the methodology remain
unanswered. It is unclear how intramolecular energy
contributions are accounted for when only intermolecu-
lar energy contributions are evaluated, whether free
energy changes associated with expulsion of bound
water from the active site can be reproduced, and
whether the entropy change associated with binding is
fully explained by the parametrization. Experience of
calculating free energies of hydration of simple mol-
ecules also suggests that the statistical basis of the LIE
method requires careful assessment.21 In an effort to
address these issues, a study of inhibitors of the protein
neuraminidase is reported here using LIE. This system
provides an excellent test case for which several of the
aforementioned points of interest are pertinent. For
example, one of the protein residues is known to
undergo a conformational change upon the binding of
certain inhibitors, and the number of tightly bound
water molecules is known to vary depending on the
inhibitor. There is also a wide range of binding constants
despite the structural differences between inhibitors
being small. Hence FEP calculations on these systems
are practicable.

Neuraminidase is an influenza enzyme which facili-
tates the release of virons from infected cells by cleaving
sialic acid residues from the carbohydrate side chains.
It has a tetrameric structure consisting of four polypep-
tide chains each containing around 470 amino acid
residues depending on the strain of the virus. These
chains consist of globular headgroups on the end of a
long stalk. The structure of the stalk has not yet been
established, but this should not be of practical signifi-
cance since it is so far from the active site. Structures
of the headgroup are known for several strains of
neuraminidase, and the work presented here is based
on a monomer of the N2 strain of influenza A.

Methods

The original LIE work proposed eq 1 for the calculation of
binding free energies, with an R value of 0.161. Subsequent
application of the equation in that form by the same research
group to HIV-1 protease and trypsin inhibitor systems gave
rms deviations from experiment of between 1.0 and 2.2 kcal
mol-1.12,17,18 Other workers have also applied the method,15,16

but, transfer of the R parameter to their systems did not yield
accurate predictions. However, good agreement between simu-
lation and experiment was achieved upon reparametrization

of the equation. When Paulsen and Ornstein applied the
method to the calculation of the binding affinity of a series of
P450cam substrates,16 an optimal fit was achieved with an R
value of 1.043. When Jones-Hertzog and Jorgensen applied
the method to a series of thrombin-inhibitor complexes,15 the
application of eq 1 gave an optimal R value of 0.734. However,
even having optimized the parameter to the system of interest,
the rms deviation from experiment was 4.40 kcal mol-1; the
equation in this form did not provide a satisfactory fit to the
data. In light of this, modified forms of the equation were
applied. First, the electrostatic coefficient â was included in
the parametrization:

Optimization of this equation generated values of R ) 0.476
and â ) 0.165 with a much improved rms deviation of 1.34
kcal mol-1. As an extension of previous work which had been
carried out using LIE to calculate free energies of hydration,22

the equation was extended to include a term to account for
the change in solvent accessible surface area (SASA), whence:

Again, optimizing R, â, and γ yielded an improvement in
the fit to the experimental data; values of R ) 0.236, â ) 0.146,
and γ ) 0.010 gave an rms deviation of 1.15 kcal mol-1. This
trend is perhaps unsurprising since increasing the number of
explanatory variables in the equation will invariably improve
the goodness of fit. Indeed if the number of explanatory
variables equals the number of observations a perfect fit is
achieved by definition, although the model will not have been
generalized. Consequently, such a model would have a low
power of prediction.

In addition to binding studies, the LIE method has also been
applied to the predictions of free energies of solvation and
hydration21-23 with good success. The addition of the SASA
term to the LIE equation was first proposed in these papers,
its inclusion being rationalized as accounting for the cost of
cavitation22 and, hence, allowing for the possibility of positive
free energies of hydration. Most recently another study of free
energies of hydration suggested that using all the terms in eq
3 may in fact be overfitting the data.21 The solvent accessible
surface area and van der Waals terms were highly correlated,
and other simpler equations were shown to perform almost
as well. In particular, fitting to the equation

gave an rms deviation from experiment of just 0.74 kcal mol-1

for a set of 22 small organic molecules.
In this light, a detailed statistical investigation of the

method is called for. Moreover, the questions previously posed
regarding the inclusion of additional factors in the equation
need addressing such that the optimum fitting equation is
generated without making any a priori assumptions regarding
the validity of any particular variable. Recently, a basic
statistical analysis has been reported,13 although it is not clear
that the statistical methods chosen were the most appropriate
for the data sets investigated. A set of 15 diverse neuramini-
dase inhibitors was studied to investigate these issues.

Computational Details
Simulation systems were prepared for a set of 15

neuraminidase inhibitors. Five were based on DANA
(2-deoxy-2,3-didehydro-N-acetylneuraminic acid) (Fig-
ure 1), and the remainder were based on the amide
derivatives of this molecule (Figures 2 and 3). Experi-
mental data were available for the DANA structures in
the form of Kis,24 whereas the data for the amide
derivatives were in the form of IC50s25 and were

∆G ) â〈∆Uelec〉 + R〈∆Uvdw〉 (2)

∆G ) â〈∆Uelec〉 + R〈∆Uvdw〉 + γ〈∆SASA〉 (3)

∆G ) R + â〈∆Uelec〉 (4)
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converted to Kis using the Cheng-Prusoff equation:26

Ki is the Michaelis constant and [S] is the substrate
concentration. These values were obtained from the
authors of the experimental paper and are 15 × 10-6

and 100 µM, respectively.27 Discussions with the ex-
perimentalists also assured us that the application of
the Cheng-Prusoff equation to this data set was valid.27

Experimental errors on the Kis and IC50s were quoted
as approximately half an order of magnitude. This
corresponds to about a 1 kcal mol-1 error in the
experimental free energy of binding.

There is excellent diversity in the data, both in terms
of the range of inhibition constants and in the range of

structures of the inhibitors. Of particular interest is the
fact that the number of tightly bound waters varies
between the hydroxyl and guanadino forms (Figure 4).
The figure shows that when the DANA molecule is
bound (pdb structure 1nsd), a water molecule is clearly
stabilized between the hydroxyl group of the inhibitor
and residues GLU227 and TRP178. However, when this
hydroxyl substituent is replaced with a guanadino,28 the
water is expelled from the active site. A difference in
the number of tightly bound waters has also been
reported between the amino and guanadino forms.25

Moreover, there is a conformational change known to
take place in residue GLU276 between the binding of the
glycerol type inhibitors and the amide type inhibitors.
Hydrogen bonds are known to exist between GLU276 and
the glycerol chains of the DANA inhibitors (pdb struc-
ture 1ivf). However, when this glycerol group is replaced
by an amide,28 GLU276 has been observed to rotate25 and
form a salt bridge to ARG224 (see Figure 5).

The protein structure used in the simulations was
that of the N2 strain of neuraminidase with sialic acid
bound (Brookhaven protein data bank entry 2bat). The
crystal structure was examined for the correct orienta-
tion of the histidine residues. This was done by consid-
ering whether the hydrogen bonding structure would
clearly be enhanced by rotating any of the histidines
through 180°. The analysis revealed no significant
evidence that any residues should be rotated. The pH
of the experimental studies was 6.5 so the histidine
residues were assumed to be protonated unless there
was evidence that a hydrogen bond could be accepted
from another residue. No such evidence was found.
Since the crystallographic structure does not contain
any hydrogen atoms, they were added in the minimum
energy conformation of the appropriate torsional poten-
tial. However, in the case of hydrogen bond donating
residues, this is not necessarily the most appropriate
conformation. Hence, all threonine, serine, and tyrosine
residues were examined in turn to see whether the
hydrogen bonding pattern indicated that an alternative
conformation would be more appropriate. For example
if the hydrogen had been assigned in the trans config-
uration, but a clear hydrogen bond was available in the

Figure 1. Experimental data for DANA type structures.

Figure 2. Experimental data for amino type structures.

Ki )
IC50

1 +
[S]
Km

(5)

Figure 3. Experimental data for guanadino type structures.

5144 Journal of Medicinal Chemistry, 1999, Vol. 42, No. 25 Wall et al.



gauche conformation, then a change was made to this
conformation. As with the histidines, if there was any
doubt about the validity of such a rearrangement, the
atom was left in its original position.

The only structure available with an amide type
inhibitor (structure 4g ref 25) was for the N9 strain of
neuraminidase.28 However, the active site structure is
known to be conserved between the various strains of
neuraminidase,29 and the binding orientation of DANA
inhibitors is the same in N2 and N9 (structures 1ivf and
1nnb). Consequently, the docking of the inhibitors into
the N2 system was carried out on the basis of the N9
structure. All the inhibitors were assumed to bind in
the same orientation. The structure so obtained was
then used as a template for the binding of the other
inhibitors, with docking being carried out by superim-
posing the ring atoms. For the phenyl substituted
amides, the docking conformation of the aromatic rings
was not clear. Consequently, the amide substituents
were placed in the all trans conformation, and an extra
1 M (million) configurations of Monte Carlo equilibra-
tion were carried out prior to the standard simulation.
During this period only, inhibitor and water moves were

carried out using preferential sampling30 to enhance
motion in the vicinity of the active site, and the protein
was constrained to its crystallographic coordinates.
Approximately 65 crystallographic water molecules
were included in the calculations depending on the exact
inhibitor structure. All the crystallographic waters in
structure 2bat were included. Other neuraminidase
structures from the pdb were superimposed, and any
waters absent from 2bat were included provided there
was no steric clash. As larger inhibitors were docked,
any of these waters causing a steric clash were also
removed. For all amide type inhibitors GLU276 was
rotated to form a salt bridge with ARG224 as observed
in crystallographic studies.25 The crystallographic con-
formation was not altered for the DANA based inhibi-
tors. The conformation of ARG224 also had to be altered
to enable this salt bridge formation; however, crystal-
lographic evidence (1nnb, 1nnc, 1ivf) suggests that this
new conformation was also more appropriate for the
DANA type structures. It has also been reported that
there is little change in the conformation of ARG224 as
the conformation of GLU276 changes,25 so all systems

Figure 4. X-ray crystallographic structures of DANA (4a, pdb structure 1nsd) and DANA with OH replaced with guanadino
(4b, unpublished structure obtained from GlaxoWellcome), showing expulsion of water from active site by the guanadino group.

Figure 5. X-ray crystallographic structures of DANA (5a, pdb structure 1ivf) and one of its amide derivatives (5b, unpublished
structure obtained from GlaxoWellcome, showing the two possible conformations of GLU276.
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were set up with ARG224 in the conformation shown in
the crystal structure with the amide inhibitor bound.28

The N2 strain of neuraminidase contains 388 resi-
dues. Adequate solvation of the full protein using
periodic boundary conditions would have required ap-
proximately 7000 water molecules. Simulating a system
of this size would have been impracticable. Thus a
spherical approximation was used, including only those
residues within a specified distance of the active site.
In such a system the outer residues must be kept frozen
since they are not being restrained by interactions with
their neighbors. The Monte Carlo method was therefore
chosen since freezing these outer residues is trivial.
Monte Carlo simulations were carried out with the
MCPRO package.31 For the simulations of the inhibitors
bound to the protein, residues within 20 Å° of the active
site were included in the simulations, and those within
15 Å of the central atom of the inhibitor were sampled.
The system was hydrated by a ball of TIP4P water32 of
radius 20 Å centered on the central atom of the
inhibitor. Any water molecules whose oxygen was
within 2.5 Å of another non-hydrogen atom were
discarded, resulting in the inclusion of approximately
375 water molecules. This simulation protocol has been
successfully applied to various protein systems.15,33 The
free ligand simulations were carried out by simply
placing the inhibitor at the center of a 20 Å sphere of
water containing approximately 1110 water molecules.
In both simulations the water molecules were restrained
to prevent evaporation using a half harmonic-restraint
20 Å from the central atom with a force constant of 1.5
kcal mol-1 Å-2. The use of a spherical hydration system
rather than conventional periodic boundary conditions
has been demonstrated to affect calculated free energies
of hydration in simple systems.34 To reduce the influence
of this approximation on the free energies of binding,
an identical system size of 20 Å was therefore adopted
for the free and bound simulations.

It has been noted that it is important to have the
same net charge for the bound and free states to avoid
having to make ill-defined Born-type corrections.10 This
was achieved in these systems by neutralizing the
charge on the protein. The charge on the 20 Å sphere
of protein was initially +5, so to neutralize this the five
nearest negatively charged residues outside the 20 Å
were also included in the simulation system. All inhibi-
tor-solvent and inhibitor-protein interactions were
evaluated. Solvent-solvent interactions were truncated
at 20 Å, protein-solvent and intramolecular nonbonded
interactions were truncated at 12 Å. A residue based
cutoff was usedsthat is to say that if any atom of a
residue is within the cutoff radius all interactions with
that residue are evaluated. Similarly, solvent interac-
tions are based on the position of the oxygen atom such
that if this is within the cutoff radius then interactions
with the whole water molecule are included.

Protein side chains were sampled by varying the bond
angles and torsions. The inhibitor was partially flexible
with ring side chains again having bond angles and
torsions sampled, but the ring was fixed. Crystal-
lographic evidence suggests that there is little variation
in the ring structure (pdb structures 1nsd, 1ivf, 1nnb)
and hence that this is a reasonable approximation.
Attempted Monte Carlo moves for the protein involved

randomly selecting a residue and making random
variations to all flexible angles and dihedrals therein.
Similarly for the inhibitor, the same variations are made
with additional whole body translations and rotations
being carried out in the bound simulations. In the free
simulations total body translations were not allowed.
Finally, water molecules were represented by the TIP4P
water32 model; since this is a rigid water model, only
total translations and rotations were attempted. Protein
residue moves were attempted every five configurations
and inhibitor moves every 99 configurations, with the
remainder of the attempted moves involving water
molecules.

The simulation of the protein environment consisted
of 15 M configurations of equilibration with only the
water sampled, followed by 3 M configurations of
equilibration with angles and dihedrals sampled as
outlined above, and finally four batches of 5 M data
collection steps. Similarly for the free ligand, 10 M
configurations of water equilibration, 3 M steps of fully
flexible equilibration, and five batches of 5 M data
collection steps were carried out. In addition to the two
basic types of simulation required to implement LIE, it
was decided to carry out an extra simulation of the free
protein. This enabled the calculation of changes in
protein energies associated with the binding process in
addition to inhibitor energy changes. This simulation
followed the same protocol as those for the bound
inhibitors. The simulations were carried out at a
constant temperature of 37 °C in agreement with the
binding experiments. Solvent accessible surface area
calculations were carried out after the simulations on
coordinates saved every 100 000 configurations by ap-
plying the Richmond algorithm35 based on its imple-
mentation in TINKER.36

The OPLS united atom force field37 was used for the
protein. Inhibitor charges, van der Waals parameters,
and angle bending parameters were assigned by analogy
to the OPLS force field, and the nonbonded parameters
are given in the Supporting Information. 1,4-Distributed
electrostatic and van der Waals interactions were scaled
by a factor of a 1/2. However, it was not possible to assign
all the inhibitor torsional parameters by analogy to
OPLS. Those dihedral parameters not obtainable by
analogy with standard OPLS values had to be derived
independently. Details of the derivation procedure and
the resulting parameters are given in the Supporting
Information.

Results and Discussion

Energies. The data collection phase of the simula-
tions was split into four successive batches of 5 M
configurations for the protein-bound calculations and
five batches of 5 M configurations for the aqueous
calculations. The averages of the following terms are
calculated for each batchsvan der Waals, electrostatic,
intramolecular energies, and the solvent accessible
surface area. The overall means and standard errors are
then determined from these batch averages. The aver-
age difference between the bound and free simulations
for each of these terms is shown in Table 1. ∆Uelec and
∆Uvdw are the changes in electrostatic and van der
Waals energies, respectively; ∆Uintra•prot and ∆Uintra•inhib
are the changes in the intramolecular energy of the
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protein and inhibitor, respectively; ∆SASAprot and ∆SA-
SAinhib are the corresponding changes in solvent acces-
sible surface area. The nonbonded contribution to the
change in the intramolecular energy, ∆Uintra•prot, of the
protein was particularly noisy owing to cutoff effects.
In an effort to prevent this from dominating the
statistics, an extra energy variable was calculated
consisting of only the change in angle and dihedral
energies of the proteinsexcluding the noisy nonbonded
term.

The simulation data (Table 1) exhibit an unusual
feature. It is observed that ∆Uintra•inhib (the change in
intramolecular energy of the inhibitor) is negative for
inhibitor 9. Careful analysis of the simulation trajectory
and the use of simulated annealing have helped to
identify two possible reasons for this. Gas phase simu-
lated annealing calculations identified several minima
of roughly the same energy. Thus it is unclear whether
the starting geometry of the inhibitor is in fact the
appropriate energy minimum when either solvated or
bound to the protein. In the aqueous simulation the
inhibitor is only sampling states close to its starting
geometry, whereas in the bound state, interactions with
the surrounding protein serve to drive conformational
change, possibly to a lower energy state. It is also
possible that the strong hydrogen bonding network
formed with the surrounding waters serves to increase
the barrier height between the two states in the aqueous
simulation. Furthermore, in solution the torsion about
the bond joining the amide to the ring is pulled away
from its equilibrium position into a relatively high
energy state.

One of the most interesting features of the neuramini-
dase protein is the ability of the GLU276 residue to adopt
two very different conformations depending on the
inhibitor. Crystallographic evidence indicates that the
residue hydrogen-bonds to the inhibitor when a glycerol
side chain is present at the C6 position, but when this
is replaced by an amide type substituent, GLU276 flips
to form a salt bridge with ARG224.25 Those structures
which started in the salt bridging form showed no sign
of moving away from that conformation during the
simulation. However, two of the simulations involving
the glycerol type inhibitors, 12 and 13, did move away
from their their starting configurations into the salt
bridging form. There was no evidence to suggest that
they were returning to the starting configuration al-
though it is not clear whether such a change would be

observed in a longer simulation. Previous simulation
work on neuraminidase has also observed considerable
flexibility in this residue,24 suggesting that the energy
balance between the two conformations is subtle and
therefore unlikely to affect binding.

The binding mode of the inhibitors is dominated by a
complicated network of hydrogen bonds which hold the
carboxylate fragment strongly in position (Figure 6).
Consequently, very little motion is observed in this part
of the active site during the simulations. Both the
experimental and simulation results (see later) show the
guanadino forms of the inhibitors to be, on average,
stronger binders than their amino analogues, although
this effect becomes less apparent as the size of the
inhibitors increases to the point where both propyl,
phenethyl inhibitors have the same binding constants.

A detailed analysis was undertaken to try to rational-
ize these observations. First, a hydrogen bonding analy-
sis was carried out whereby the number of hydrogen
bonds involving each inhibitor were calculated for both
the bound and free inhibitors during the simulations.
The change in number of hydrogen bonds on binding

Table 1. Energy Components Calculated from Monte Carlo Simulationa

inhibitor ∆Uvdw ∆Uelec ∆SASAinhib ∆SASAprot ∆Uintra•inhib ∆Uintra•prot

1 -8.186 -59.440 -432.941 -170.494 9.879 -44.447
2 -5.166 -66.369 -469.462 -192.273 11.529 -77.308
3 -9.701 -61.202 -453.177 -197.578 6.963 -82.159
4 -11.027 -80.192 -491.695 -242.094 19.165 -76.996
5 -19.671 -29.331 -485.457 -160.203 6.830 -26.480
6 -20.132 -32.002 -502.203 -199.258 10.169 -41.960
7 -19.924 -50.641 -546.761 -176.860 18.040 -31.531
8 -21.539 -42.249 -653.697 -263.619 16.476 14.537
9 -13.604 -31.429 -505.174 -234.388 -9.734 -26.190

10 -11.875 -61.397 -570.817 -230.165 10.033 -46.771
11 -10.943 -71.154 -453.739 -212.135 7.699 -115.124
12 -18.572 -49.297 -456.739 -195.791 12.774 -41.316
13 -6.217 -48.183 -515.188 -206.846 18.179 -78.924
14 -8.945 -69.303 -450.498 -212.408 8.148 -84.122
15 -18.539 -36.616 -506.006 -222.799 4.936 -64.057

a All energies in kcal mol-1.

Figure 6. X-ray crystallographic structure obtained from
GlaxoWellcome showing the carboxylate part of inhibitors held
strongly in position by four hydrogen bonds.
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was then plotted against the free energy of binding to
determine correlations; there was no evidence of a
correlation between the two. The simulation structures
were also examined visually, and a justification was
found for the preferential binding of guanadino substit-
uents over amino. This is at least in part due to the
expulsion of crystallographic water from the active site
by the guanadino group. The gain in entropy associated
with the expulsion of this water is likely to have a
favorable effect on the free energy of binding.

It is also noted that for both the amino and guanadino
forms there is a clear trend in the binding affinities:
diethyl > dimethyl > methyl, with the propyl, phenethyl
fitting between the diethyl and dimethyl. Thus increas-
ing the size of these substituents increases the binding
affinity up to a point, but it seems that the bulky
phenethyl inhibitors may be bigger than the optimum
size for the active site. Examination of the simulation
structures has not identified any specific interactions
responsible for these trends. Hence it seems that the
stronger binding of the molecules with larger amide
substituents is likely to be due to hydrophobic effects.
The addition of increasingly hydrophobic groups makes
the solvation of the inhibitors increasingly unfavorable
thereby increasing their affinity to bind to the protein.
Indeed this may in part explain the low coefficient for
the electrostatic term in the LIE equation derived in
the next section.

LIE Calculations. Having calculated the energies
the first aim was to investigate whether the linear
response parameters derived by other workers were
transferable to the neuraminidase system. To assess
this, previously proposed equations were applied to the
current data set. The equations used, the corresponding
calculated free energies, and the rms deviations with
respect to experiment are shown in Table 2. It is clear
that the coefficients derived by A° qvist et al.10 and
Paulsen and Ornstein16 are not predictive when applied
to our system. This is in some ways not surprising since
these workers used different force fields and electro-
static calculation schemes. However, the work of Jones-
Hertzog and Jorgensen on thrombin inhibitors15 used
the OPLS force field and a similar simulation protocol,
and although the agreement between predicted and
experimental values is indeed much closer than in the
other cases, an rms deviation of 5.2 kcal mol-1 (in the

best case) shows that the parameters are still not
transferable.

To derive the coefficients which give the best fit to
the neuraminidase data, a series of possible equations
were examined based on previous work (see Table 3).
Also given are the rms values of the calculated free
energies of binding with respect to experiment. The
coefficients were calculated by least-squares fitting.
Fitting to the equation

gave an rms error of 1.47 kcal mol-1, consistent with
the type of agreement other workers have observed. It
is noteworthy that the calculated coefficients vary
considerably between equations and are therefore un-
reliable. This strongly suggests that regression based
on ordinary least-squares fitting is inappropriate for this
data set (see later).

Statistical Considerations. The possibility of in-
cluding extra energy terms in the LIE expression was
investigated using the following general equation

where η is a constant. However, with only 15 compounds
in the data set, eq 7 is an overdefined model, and the
contributions of each descriptor must be carefully as-
sessed. Such analysis is often carried out using the
multiple linear regression (MLR) method. One impor-
tant assumption that underpins the MLR method is that
the predictor variables are independent. Therefore a
correlation analysis was carried out (Table 4). For the
current data set with 13 degrees of freedom, correlation
coefficients of greater than 0.51 or less than -0.51 are
significant at the 5% level. The presence of several
significant correlations indicates that MLR is an inap-

Table 2. Predicted ∆G Using Equations Proposed by Other Workers

inhibitor experiment
A° qvist R ) 0.161,

â ) 0.5, γ ) 0.00 (ref 10)
Paulsen R ) 1.043,

â ) 0.500, γ ) 0.00 (ref 16)
Jones-Hertzog R ) 0.476,

â ) 0.165, γ ) 0.00 (ref 15)
Jones-Hertzog R ) 0.236,

â ) 0.146, γ ) 0.010 (ref 15)

1 -6.5 -31.0 -38.3 -13.7 -14.9
2 -8.2 -34.0 -38.6 -13.4 -15.6
3 -9.2 -32.2 -40.7 -14.7 -15.8
4 -13.3 -41.9 -51.6 -18.5 -19.2
5 -8.5 -17.8 -35.2 -14.2 -13.8
6 -12.0 -19.2 -37.0 -14.9 -14.5
7 -13.7 -28.5 -46.1 -17.8 -17.6
8 -13.0 -24.6 -43.6 -17.2 -17.8
9 -8.2 -17.9 -29.9 -11.7 -12.9

10 -13.0 -32.6 -43.1 -15.8 -17.5
11 -10.5 -37.3 -47.0 -17.0 -17.5
12 -9.9 -27.6 -44.0 -17.0 -16.2
13 -7.1 -25.1 -30.6 -10.9 -13.7
14 -7.7 -36.1 -44.0 -15.7 -16.7
15 -12.8 -21.3 -37.6 -14.9 -14.8

rms 19.7 30.6 5.2 6.0
a All energies in kcal mol-1.

Table 3. Coefficients and rms Errors (in kcal mol-1) Derived
by Least Squares Fitting to Equations Proposed by Other
Workers

R â γ rms

â∆Uelec + R∆Uvdw + γ∆SASAinhib 0.338 0.066 0.004 1.47
â∆Uelec + R∆Uvdw 0.418 0.087 0 1.51
â∆Uelec + R -10.319 -0.001 0 2.44

∆G ) â∆Uelec + R∆Uvdw + γ∆SASA (6)

∆G ) â∆Uelec + R∆Uvdw + γ∆SASAinhib +
δ∆SASAprot + ε∆Uintra•inhib + ú∆Uintra•prot + η (7)
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propriate procedure for the analysis of these data.
Consequently, a biased regression method, continuum
regression (CR), was used to fit to eq 7.

To maximize the predictive ability of any model it is
necessary to reduce the dimensionality of the data by
identifying the most important variables from which to
construct orthogonalized components. As a general rule,
parsimonious models are likely to be more predictive
since the objects upon which the model has been
specified are likely to span the low-dimensional space
more efficiently. Before carrying out a fitting procedure
based on orthogonalized components, eq 7 needs to be
reduced to include only those energy terms that contain
useful and unique information.

Selection of Descriptor Variables for Model
Specification. The approach to this problem was to
carry out a factor analysis.38 This procedure spans the
multidimensional property space of the data using a
series of orthogonal factors constructed to simplify the
correlations between the original variables and the
factors. A variable consisting of the change in bond
angle and dihedral energies of the protein was also
included in the factor analysis. An unsupervised factor
analysis was initially carried out on the simulation
variables only, and a scree plot, Figure 7, was used to
determine the dimensionality of the descriptor variables
(the x-block). In general, factors with an eigenvalue of
less than 1 may be considered unimportant. For the
current data, Table 1, three or four factors may be
required to represent the independent data. As a rule
of thumb, approximately 3P data points are required to
make predictions with a linear model specified using P
orthogonal variables with objects spread evenly through
the variable space. Since there are 15 points in the data
set, there is enough information to make predictions on
two variables and some information about a third. The
specified equation should therefore contain two, at most
three, components.

A second, supervised factor analysis, based on the
experimental free energy (the response variable) as well
as the simulation data, was used to identify the variable
sets that make uncorrelated contributions to the re-
sponse variable ∆G. Those factors that are highly

correlated with ∆G were identified, and the variables
that make the largest contributions to those factors were
then selected as important variables for regression
analysis. The results revealed that ∆Uvdw and ∆SASAprot
were the most closely associated to ∆G. However, it has
been established that up to three descriptor variables
can be considered for prediction of ∆G. To determine
the third, an ordinary least squares (OLS) analysis was
carried out using these two variables with leave one out
(LOO) cross-validation. This yielded a cross-validated
regression coefficient (q2) of 0.33. The remaining vari-
ables were then added in turn, and the procedure was
repeated. A substantially improved q2 of 0.56 was
achieved when ∆Uelec was added. Hence ∆Uvdw, ∆Uelec,
and ∆SASAprot were used in the final stage of model
specification.

Model Specification Using Continuum Regres-
sion. A new generalized procedure, continuum regres-
sion (CR),39-41 encompasses ordinary least squares
(OLS) and a continuum of orthogonalized regression
procedures including partial least squares (PLS) and
principle components regression (PCR). The Portsmouth
formulation of the CR40 implemented using the PARA-
GON drug design software42 uses a parameter, R, to
determine the component construction criteriasR takes
values between 0 and 1.5 where R ) 0 corresponds to
OLS, R ) 0.5 is PLS, and R ) 1 corresponds to PCR.
The CR procedure was used to vary the value of R
between 0 and 1.5, with the leave one out (LOO) cross-
validated regression coefficient (q2) calculated as a
function of R (Figure 8). For most values of R, two
components were found to be significant. The most
predictive three-variable model was identified on the
basis of the q2. The highest value of q2 ) 0.62 was
obtained for R ) 1.0, corresponding to PCR.

The final step in the model specification process was
to repeat the CR procedure on each subset of two of the
three variables chosen above to check for more predic-

Table 4. Correlation Analysis of Energy Components

∆G ∆Uvdw ∆Uelec ∆SASAinhib ∆SASAprot ∆Uintra•inhib

∆Uvdw 0.600
∆Uelec -0.009 -0.663
∆SASAinhib 0.612 0.492 -0.321
∆SASAprot 0.450 0.063 0.120 0.577
∆Uintra•inhib -0.337 -0.006 -0.385 -0.267 -0.026
∆Uintra•prot -0.250 -0.689 0.655 -0.655 -0.115 -0.029

Figure 7. Scree plot from unsupervised factor analysis.

Figure 8. Plot of LOO cross-validated correlation coefficient
(q2) vs CR parameter R for model constructed from ∆Uvdw,
∆Uelec, and ∆SASAprot.
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tive models. Application to ∆Uvdw and ∆SASAprot, and
to ∆Uelec and ∆SASAprot, produced no improvement. For
many values of R no significant model was found, and
where one was identified the best, q2 was 0.34. However,
when the two-variable model comprising ∆Uvdw and
∆Uelec was specified, the plot of q2 against R shown in
Figure 9 was obtained; the corresponding values of R2

are also plotted. This showed an improved q2 in excess
of 0.7 at R ) 0.58. It was also noted that within this R
domain, q2 was sensitive to changes in R. CR was
therefore repeated with R incremented in 0.001 steps
for the range 0.57 < R < 0.63. This yielded a further
improvement of q2 ) 0.737 at R ) 0.584 for a one-
component model. Fitting this model to all 15 points
yielded an rms deviation from experiment of 1.61 kcal
mol-1 and a correlation coefficient (R2) of 0.622. It is
encouraging to note that the CR model (R ) 0.584) has
an R2 equal to that obtained using OLS. The increased
value of q2 (0.74) confirms that R ) 0.584 yields a more
generalized model than that obtained by OLS (R ) 0;
q2 ) 0.533) and should therefore be more predictive.
This degree of prediction results from the construction
of a low dimensional model comprising a single CR
component that summaries all of the relevant informa-
tion in the descriptor variables required to explain the
variation in ∆G.

The physical meaning of the orthogonalized regres-
sion model is difficult to interpret. The results were
therefore transformed back to the original data space
resulting in the model described by eq 8.

Standard errors have been estimated using boot-
strapping based on 1000 runs. A plot of the calculated
free energies against experimental values is shown
(Figure 10). The plot indicates that the derived equation
is unbiased and predicts the order of the binding
constants more or less correctly. The rms deviation from
experiment is typical of the type of agreement other
workers have observed.

Inhibitor 14 was the only charged inhibitor, and it
was therefore considered that its inclusion may be
biasing the statistics. The statistical procedure was
therefore repeated on the data set containing only the
neutral inhibitors. The removal of inhibitor 14 had only

a marginal influence on the coefficients in the final
equation and the cross-validated statistics. The value
of q2 dropped to 0.594, and the values of the constant
term and van der Waals and electrostatic coefficients
became 1.756, 0.457, and 0.114, within the errors on
the coefficients for the full model. Thus the inclusion of
inhibitor 14 is not having a detrimental effect on the
fitting, as would be expected in light of the precautions
taken to avoid having to make ill-defined Born-type
corrections.

There is no evidence for this system and force field
that there is a factor of 0.5 relating ∆Uelec to ∆G. It
should, however, be noted that the values of R and â
derived in this work are similar to those obtained by
Jones-Hertzog and Jorgensen,15 who also used a very
similar simulation protocol to that adopted here. The
use of approximations such as spherical systems and
nonbonded cutoffs can affect both the accuracy and
precision of the energies obtained from a simulation.
The current work has used a charge neutralization
protocol and has made the sphere size and cutoff lengths
as large as possible in an effort to minimize such effects.
However, it is noted that these approximations will
result in the simulation protocol having a direct effect
on the form of the LIE equation and its coefficients.
Hence a true test of coefficient transferability can only
be achieved by simulating a selection of systems using
the same protocol.19

Conclusions
A series of inhibitors of the protein neuraminidase

have been studied by Monte Carlo simulations and
application of the LIE method for the calculation of free
energies of binding. Three classes of inhibitors have
been studied, those based on DANA, and the amino and
guanadino forms of the amide derivatives of that
molecule. Studies have shown that the stronger binding
of guanadino molecules with respect to their amino
analogues is likely to be the consequence of the expul-
sion of tightly bound water from the active site. Binding
affinities are also observed to increase as the size of the
amide substituents increases. Since no specific interac-
tions can be identified as responsible for this trend, it
seems likely to be due to hydrophobic effects. The
simulation results have also been consistent with previ-
ous observations that the residue GLU276 adopts a
different conformation for the amide type inhibitors
than for DANA and is conformationally mobile.

Figure 9. Plot of LOO cross-validated correlation coefficient
(q2) and correlation coefficient (R2) vs CR parameter R for
model constructed from ∆Uvdw and ∆Uelec.

Figure 10. Plot of fitted vs experimental free energies of
binding for the most predictive model.

∆G ) 2.603 + 0.472∆Uvdw + 0.122∆Uelec

( 0.116 ( 0.063 (8)
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A difficult test case for the LIE method has been
studied, using a diverse set of 15 inhibitors. Although
equations proposed by other workers have not proved
to be predictive when applied to the current system, a
careful statistical analysis has enabled the deduction
of an equation which produces fitted and cross-validated
R2 values that indicate the method could be useful for
rational drug design purposes. The evidence also sug-
gests that under the OPLS force field and the simulation
protocol used here the linear response result that the
change in free energy and the change in electrostatic
energy are related by a factor of a half is not transfer-
able to protein systems. It is also noted that great care
should be taken over the addition of terms to the LIE
equation without evidence of the significance of their
inclusion. Consequently it seems that the best way of
determining which variables are appropriate for inclu-
sion is by statistical fitting.

It also seems clear that the MLR method typically
applied to analyze such data is not valid due to the
intrinsic cross-correlations in the data. Such difficulties
should be overcome by using a statistical procedure
based on a set of orthogonal variables (components)
spanning the data space. A fitting procedure based on
the orthogonalized variables can be carried out and the
optimum model mapped back to the original data space
as required. The statistical analysis has also revealed
that three or four variables are likely to be required to
explain optimally the data. However, to obtain good
estimates on three variables a larger data set is required
containing at least 27 data points.

The results of the statistical analysis have indicated
that despite the complexity of the system, terms ac-
counting for the change in intramolecular energy and
solvent accessible surface area do not make significant
contributions to the change in free energy on binding.
Moreover, in agreement with previous work, ∆Uelec and
∆Uvdw have been found to be the most important
variables for making predictions of ∆G giving a q2 of
0.74. This result was obtained without recourse to prior
knowledge and is therefore based solely on the data.
However, it should be noted that the use of appropri-
ately constructed components, chosen using the con-
tinuum regression method, has provided a dramatic
improvement in the predictive ability of the final
equation over one determined by simple least-squares
fitting.

It seems the LIE method can produce reasonable
predictions of binding free energies. However, it also
seems that there is no unique formula which can be
universally applied to such calculations. Consequently,
a typical application would probably involve the use of
a training set of molecules to deduce the appropriate
parameters followed by the application of this formula
to the molecules of interest. Unfortunately, this means
that the method may not be as efficient as was initially
hoped, but as sampling methodology and computer
speeds increase it will become increasingly practicable.
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